
Lecture 35

ZPP  RP  coRP, PIT= ∩



ZPP  RP  coRP= ∩



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof:



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)
 If  outputs something, then  outputs the same. Else  outputs 2) M M′￼ M′￼ 0.



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)
 If  outputs something, then  outputs the same. Else  outputs 2) M M′￼ M′￼ 0.

Correctness analysis:



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)
 If  outputs something, then  outputs the same. Else  outputs 2) M M′￼ M′￼ 0.

• When :x ∉ L

Correctness analysis:



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)
 If  outputs something, then  outputs the same. Else  outputs 2) M M′￼ M′￼ 0.

• When :x ∉ L

Correctness analysis:

• When :x ∈ L



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)
 If  outputs something, then  outputs the same. Else  outputs 2) M M′￼ M′￼ 0.

• When :x ∉ L

Correctness analysis:

• When :x ∈ L

   with probability .M′￼(x) = 0 1



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)
 If  outputs something, then  outputs the same. Else  outputs 2) M M′￼ M′￼ 0.

• When :x ∉ L

Correctness analysis:

• When :x ∈ L Probability of   M′￼(x) = 0

   with probability .M′￼(x) = 0 1



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)
 If  outputs something, then  outputs the same. Else  outputs 2) M M′￼ M′￼ 0.

• When :x ∉ L

Correctness analysis:

• When :x ∈ L Probability of   M′￼(x) = 0   Probability that  runs for   steps= M > 3.p(n)

   with probability .M′￼(x) = 0 1



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)
 If  outputs something, then  outputs the same. Else  outputs 2) M M′￼ M′￼ 0.

• When :x ∉ L

  Pr≤ [Tx ≥ 3.p(n)]

Correctness analysis:

• When :x ∈ L Probability of   M′￼(x) = 0   Probability that  runs for   steps= M > 3.p(n)

   with probability .M′￼(x) = 0 1



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)
 If  outputs something, then  outputs the same. Else  outputs 2) M M′￼ M′￼ 0.

• When :x ∉ L

  Pr≤ [Tx ≥ 3.p(n)]   Ex  / ≤ (Tx) 3.p(n)

Correctness analysis:

• When :x ∈ L Probability of   M′￼(x) = 0   Probability that  runs for   steps= M > 3.p(n)

   with probability .M′￼(x) = 0 1



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)
 If  outputs something, then  outputs the same. Else  outputs 2) M M′￼ M′￼ 0.

• When :x ∉ L

  Pr≤ [Tx ≥ 3.p(n)]   Ex  / ≤ (Tx) 3.p(n)

Correctness analysis:

• When :x ∈ L Probability of   M′￼(x) = 0   Probability that  runs for   steps= M > 3.p(n)

  ≤ 1/3

   with probability .M′￼(x) = 0 1



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.= ∩

Proof: ZPP  RP  coRP:⊆ ∩

Let   ZPP and  be a PTM that decides  and runs in expected polytime, say .L ∈ M L p(n)

RP algorithm for : Consider the PTM  that on input L M′￼ x:
 Runs  for  steps.1) M 3.p(n)
 If  outputs something, then  outputs the same. Else  outputs 2) M M′￼ M′￼ 0.

• When :x ∉ L

  Pr≤ [Tx ≥ 3.p(n)]   Ex  / ≤ (Tx) 3.p(n)

Correctness analysis:

• When :x ∈ L Probability of   M′￼(x) = 0   Probability that  runs for   steps= M > 3.p(n)

  ≤ 1/3

   with probability .M′￼(x) = 0 1

…



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x
 Runs  on . If  outputs , then  also outputs .1) A x A 1 M 1



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x
 Runs  on . If  outputs , then  also outputs .1) A x A 1 M 1
 Runs  on . If  outputs , then  also outputs .2) B x B 0 M 0



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x
 Runs  on . If  outputs , then  also outputs .1) A x A 1 M 1
 Runs  on . If  outputs , then  also outputs .2) B x B 0 M 0
 Otherwise, repeat steps  and .3) 1 2



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x
 Runs  on . If  outputs , then  also outputs .1) A x A 1 M 1
 Runs  on . If  outputs , then  also outputs .2) B x B 0 M 0
 Otherwise, repeat steps  and .3) 1 2

 always gives the right answer.M



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x
 Runs  on . If  outputs , then  also outputs .1) A x A 1 M 1
 Runs  on . If  outputs , then  also outputs .2) B x B 0 M 0
 Otherwise, repeat steps  and .3) 1 2

Time analysis:

 always gives the right answer.M



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x
 Runs  on . If  outputs , then  also outputs .1) A x A 1 M 1
 Runs  on . If  outputs , then  also outputs .2) B x B 0 M 0
 Otherwise, repeat steps  and .3) 1 2

Time analysis:

 always gives the right answer.M

Probability of  stopping in .  timeM 2 p(n) . i



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x
 Runs  on . If  outputs , then  also outputs .1) A x A 1 M 1
 Runs  on . If  outputs , then  also outputs .2) B x B 0 M 0
 Otherwise, repeat steps  and .3) 1 2

Time analysis:

 always gives the right answer.M

Probability of  stopping in .  timeM 2 p(n) . i   =
2
3

.
1
3

i−1



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x
 Runs  on . If  outputs , then  also outputs .1) A x A 1 M 1
 Runs  on . If  outputs , then  also outputs .2) B x B 0 M 0
 Otherwise, repeat steps  and .3) 1 2

Time analysis:

 always gives the right answer.M

Probability of  stopping in .  timeM 2 p(n) . i

’s expected running timeM

  =
2
3

.
1
3

i−1



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x
 Runs  on . If  outputs , then  also outputs .1) A x A 1 M 1
 Runs  on . If  outputs , then  also outputs .2) B x B 0 M 0
 Otherwise, repeat steps  and .3) 1 2

Time analysis:

 always gives the right answer.M

Probability of  stopping in .  timeM 2 p(n) . i

’s expected running timeM

  =
2
3

.
1
3

i−1

   = ∑
i≥1

2.p(n) . i . ( 2
3

.
1
3

i−1

)



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x
 Runs  on . If  outputs , then  also outputs .1) A x A 1 M 1
 Runs  on . If  outputs , then  also outputs .2) B x B 0 M 0
 Otherwise, repeat steps  and .3) 1 2

Time analysis:

 always gives the right answer.M

Probability of  stopping in .  timeM 2 p(n) . i

’s expected running timeM   = O(p(n))

  =
2
3

.
1
3

i−1

   = ∑
i≥1

2.p(n) . i . ( 2
3

.
1
3

i−1

)



ZPP  RP  coRP= ∩
Theorem: ZPP  RP  coRP.


Proof:

= ∩

RP  coRP  ZPP:∩ ⊆

Let   RP, coRP.L ∈ Let  and  be ’s RP and coRP machines with  runtime.A B L p(n)

ZPP machine  for  on input :M L x
 Runs  on . If  outputs , then  also outputs .1) A x A 1 M 1
 Runs  on . If  outputs , then  also outputs .2) B x B 0 M 0
 Otherwise, repeat steps  and .3) 1 2

Time analysis:

 always gives the right answer.M

Probability of  stopping in .  timeM 2 p(n) . i

’s expected running timeM   = O(p(n))

  =
2
3

.
1
3

i−1

   = ∑
i≥1

2.p(n) . i . ( 2
3

.
1
3

i−1

)



Polynomial Identity Testing



ZEROP Problem: 

Polynomial Identity Testing



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2

Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from  to .ℤn ℤ

Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from  to .ℤn ℤ

Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from  to .ℤn ℤ

Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

x1 x2

+ −

×

1



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from  to .ℤn ℤ

Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

x1 x2

+ −

×

1



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from  to .ℤn ℤ

Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

x1 x2

+ −

×

   = (x1 + x2 + 1)(x1 − x2)

1



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from  to .ℤn ℤ

Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from  to .ℤn ℤ

Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

Simplest Approach for ZEROP:



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from  to .ℤn ℤ

Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

Simplest Approach for ZEROP:

• Given an algebraic circuit, compute the corresponding polynomial, say .p(x)



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from  to .ℤn ℤ

Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

Simplest Approach for ZEROP:

• Given an algebraic circuit, compute the corresponding polynomial, say .p(x)

• Output  iff all the coefficients of the corresponding polynomial are .1 0



ZEROP Problem: 

Polynomial Identity Testing
Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

Example: Is  zero on all values of  and ?x2
1 x2 − x1x2 + x2 x1 x2

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from  to .ℤn ℤ

Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

Simplest Approach for ZEROP:

• Given an algebraic circuit, compute the corresponding polynomial, say .p(x)

• Output  iff all the coefficients of the corresponding polynomial are .1 0

Flaw:  size algebraic circuits can compute polynomials with  many monomials, e.g., .O(n) 2n Πi∈[n](1 + xi)



Polynomial Identity Testing



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d

Polynomial Identity Testing



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S

Polynomial Identity Testing



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S

Polynomial Identity Testing

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Polynomial Identity Testing

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Polynomial Identity Testing

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Algorithm  for ZEROP for a circuit  of size  that takes  inputs:A C m n

Polynomial Identity Testing

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Algorithm  for ZEROP for a circuit  of size  that takes  inputs:A C m n
 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]

Polynomial Identity Testing

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Algorithm  for ZEROP for a circuit  of size  that takes  inputs:A C m n
 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Evaluate   .2) C(x1, x2, ……, xn) = y

Polynomial Identity Testing

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Algorithm  for ZEROP for a circuit  of size  that takes  inputs:A C m n
 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Evaluate   .2) C(x1, x2, ……, xn) = y
 If , then accept. Otherwise, reject.3) y = 0

Polynomial Identity Testing

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Algorithm  for ZEROP for a circuit  of size  that takes  inputs:A C m n
 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Evaluate   .2) C(x1, x2, ……, xn) = y
 If , then accept. Otherwise, reject.3) y = 0

Correctness Analysis:

Polynomial Identity Testing

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Algorithm  for ZEROP for a circuit  of size  that takes  inputs:A C m n
 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Evaluate   .2) C(x1, x2, ……, xn) = y
 If , then accept. Otherwise, reject.3) y = 0

Correctness Analysis: If ZEROP, then  accepts with probabilityC ∈ A

Polynomial Identity Testing

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Algorithm  for ZEROP for a circuit  of size  that takes  inputs:A C m n
 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Evaluate   .2) C(x1, x2, ……, xn) = y
 If , then accept. Otherwise, reject.3) y = 0

Correctness Analysis: If ZEROP, then  accepts with probabilityC ∈ A

Polynomial Identity Testing

If ZEROP, then  rejects with probabilityC ∉ A

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Algorithm  for ZEROP for a circuit  of size  that takes  inputs:A C m n
 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Evaluate   .2) C(x1, x2, ……, xn) = y
 If , then accept. Otherwise, reject.3) y = 0

Correctness Analysis: If ZEROP, then  accepts with probabilityC ∈ A

Polynomial Identity Testing

 .1

If ZEROP, then  rejects with probabilityC ∉ A

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Algorithm  for ZEROP for a circuit  of size  that takes  inputs:A C m n
 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Evaluate   .2) C(x1, x2, ……, xn) = y
 If , then accept. Otherwise, reject.3) y = 0

Correctness Analysis: If ZEROP, then  accepts with probabilityC ∈ A

Polynomial Identity Testing

 .1

  ≥ 1 −
2m

10.2m
If ZEROP, then  rejects with probabilityC ∉ A

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Algorithm  for ZEROP for a circuit  of size  that takes  inputs:A C m n
 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Evaluate   .2) C(x1, x2, ……, xn) = y
 If , then accept. Otherwise, reject.3) y = 0

Correctness Analysis: If ZEROP, then  accepts with probabilityC ∈ A

  = 9/10

Polynomial Identity Testing

 .1

  ≥ 1 −
2m

10.2m
If ZEROP, then  rejects with probabilityC ∉ A

Then, if  are randomly chosen from  with a1, a2, …, am S



Schwartz-Zippel Lemma: Let  be a non-zero polynomial with degree at most . p(x1, x2, …, xm) d
Let  be a finite set of integers.S
replacement, then

Pr[p(a1, a2, …, am) ≠ 0] ≥ 1 −
d

|S |

Algorithm  for ZEROP for a circuit  of size  that takes  inputs:A C m n
 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Evaluate   .2) C(x1, x2, ……, xn) = y
 If , then accept. Otherwise, reject.3) y = 0

Correctness Analysis: If ZEROP, then  accepts with probabilityC ∈ A

  = 9/10

Flaw:  can be as large as .y (10.2m)2m

Polynomial Identity Testing

 .1

  ≥ 1 −
2m

10.2m
If ZEROP, then  rejects with probabilityC ∉ A

Then, if  are randomly chosen from  with a1, a2, …, am S



Polynomial Identity Testing



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m] and a  is a number chosen randomly from .k [1,22m]



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m] and a  is a number chosen randomly from .k [1,22m] Then, with



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m] and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]   ≥
22m

2m

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]   ≥
22m

2m
(from prime number theorem)

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]   ≥
22m

2m
(from prime number theorem)

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]   ≥
22m

2m
 |S |

(from prime number theorem)

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]   ≥
22m

2m
 |S |   ≤ log y

(from prime number theorem)

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]   ≥
22m

2m
 |S |   ≤ log y   ≤ 5m2m

(from prime number theorem)

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]   ≥
22m

2m
 |S |   ≤ log y   ≤ 5m2m   ≤

22m

4m
(from prime number theorem)

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]   ≥
22m

2m
 |S |   ≤ log y   ≤ 5m2m   ≤

22m

4m

# of prime numbers in  that are not in [1,22m] S

(from prime number theorem)

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]   ≥
22m

2m
 |S |   ≤ log y   ≤ 5m2m   ≤

22m

4m

# of prime numbers in  that are not in [1,22m] S ≥
22m

4m

(from prime number theorem)

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]   ≥
22m

2m
 |S |   ≤ log y   ≤ 5m2m   ≤

22m

4m

# of prime numbers in  that are not in [1,22m] S ≥
22m

4m

(from prime number theorem)

Probability that  does not divide          k y ≥
22m/4m

22m
=

1
4m

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing
Lemma: Let y ∈ [1,(10.2m)2m]

# of prime numbers in [1,22m]   ≥
22m

2m
 |S |   ≤ log y   ≤ 5m2m   ≤

22m

4m

# of prime numbers in  that are not in [1,22m] S ≥
22m

4m

(from prime number theorem)

Probability that  does not divide          k y ≥
22m/4m

22m
=

1
4m

Proof:

and a  is a number chosen randomly from .k [1,22m] Then, with

probability at least  ,  does not divide δ =
1

4m
k y.

Let  denote the set of all prime factors of .S = {p1, p2, …, pl} y

Sufficient to show that with probability  ,  will be a prime number number not in .≥ δ k S



Polynomial Identity Testing



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 If , then accept. Otherwise, reject.4) y = 0



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 If , then accept. Otherwise, reject.4) y = 0

Correctness Analysis:



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 If , then accept. Otherwise, reject.4) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 If , then accept. Otherwise, reject.4) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A  .1



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 If , then accept. Otherwise, reject.4) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A

If ZEROP, then  rejects with probabilityC ∉ A

 .1



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 If , then accept. Otherwise, reject.4) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A

If ZEROP, then  rejects with probabilityC ∉ A

 .1

≥ (9/10)



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 If , then accept. Otherwise, reject.4) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A

If ZEROP, then  rejects with probabilityC ∉ A

 .1

≥ (9/10) . (1/4m)



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 If , then accept. Otherwise, reject.4) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A

How can we improve the probability to a constant?

If ZEROP, then  rejects with probabilityC ∉ A

 .1

≥ (9/10) . (1/4m)



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:B C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 If , then accept. Otherwise, reject.4) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A

How can we improve the probability to a constant?

If ZEROP, then  rejects with probabilityC ∉ A

 .1

≥ (9/10) . (1/4m)

Repeat   times and accept iff  on all iterations.B O(m) y = 0



Polynomial Identity Testing



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 Repeat ,   times.4) 2) 3) 40m/9



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 Repeat ,   times.4) 2) 3) 40m/9
 Accept iff  on all iterations.5) y = 0



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 Repeat ,   times.4) 2) 3) 40m/9
 Accept iff  on all iterations.5) y = 0

Correctness Analysis:



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 Repeat ,   times.4) 2) 3) 40m/9
 Accept iff  on all iterations.5) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 Repeat ,   times.4) 2) 3) 40m/9
 Accept iff  on all iterations.5) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A  .1



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 Repeat ,   times.4) 2) 3) 40m/9
 Accept iff  on all iterations.5) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A

If ZEROP, then  accepts with probabilityC ∉ A

 .1



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 Repeat ,   times.4) 2) 3) 40m/9
 Accept iff  on all iterations.5) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A

If ZEROP, then  accepts with probabilityC ∉ A

 .1

≤ (1 −
9

40m )



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 Repeat ,   times.4) 2) 3) 40m/9
 Accept iff  on all iterations.5) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A

If ZEROP, then  accepts with probabilityC ∉ A

 .1

≤ (1 −
9

40m )
40m/9



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 Repeat ,   times.4) 2) 3) 40m/9
 Accept iff  on all iterations.5) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A

If ZEROP, then  accepts with probabilityC ∉ A

 .1

≤ (1 −
9

40m )
40m/9

≤ 1/e



Polynomial Identity Testing
Algorithm  for ZEROP for a circuit  of size  that takes  input:D C m n

 Choose  randomly from .1) x1, x2, …, xn [1,2,……,10.2m]
 Choose  randomly from .2) k [1,22m]
 Evaluate  mod .3) C(x1, x2, ……, xn) k = y
 Repeat ,   times.4) 2) 3) 40m/9
 Accept iff  on all iterations.5) y = 0

Correctness Analysis:

If ZEROP, then  accepts with probabilityC ∈ A

If ZEROP, then  accepts with probabilityC ∉ A

 .1

≤ (1 −
9

40m )
40m/9

≤ 1/e


