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\Q

Flaw: O(n) size algebraic cireuits can compute polynomials with 2" many monomdals, e.g., I;cp, (1 + X))

i
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1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ...... ,X,) mod k = y.

4) It y = 0, then accept. Otherwise, reject.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.
it C & ZEROP, then A rejects with probability > (9/10) . (1/4m)

How can we improve the probability to a constant?

Repeat B O(m) times and accept iff y = 0 on all iterations.
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