$ZPP = RP \cap coRP, PIT$

Lecture 35

Theorem: $ZPP = RP \cap coRP$.

Theorem: $ZPP = RP \cap coRP$.

Proof:

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

Let $L \in ZPP$ and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for *L*: Consider the PTM M' that on input *x*:

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

Let $L \in ZPP$ and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M' that on input x: 1) Runs M for 3.p(n) steps.

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

RP algorithm for *L*: Consider the PTM M' that on input *x*: 1) Runs M for 3.p(n) steps.

2) If M outputs something, then M' outputs the same. Else M' outputs 0.

- Let $L \in ZPP$ and M be a PTM that decides L and runs in expected polytime, say p(n).

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

RP algorithm for L: Consider the PTM M' that on input x:

1) Runs M for 3.p(n) steps.

2) If M outputs something, then M' outputs the same. Else M' outputs 0.

Correctness analysis:

- Let $L \in ZPP$ and M be a PTM that decides L and runs in expected polytime, say p(n).

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

RP algorithm for L: Consider the PTM M' that on input x:

1) Runs *M* for 3.p(n) steps.

2) If M outputs something, then M' outputs the same. Else M' outputs 0.

Correctness analysis:

• When $x \notin L$:

- Let $L \in ZPP$ and M be a PTM that decides L and runs in expected polytime, say p(n).

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

RP algorithm for *L*: Consider the PTM M' that on input *x*:

1) Runs M for 3.p(n) steps.

2) If M outputs something, then M' outputs the same. Else M' outputs 0.

Correctness analysis:

- When $x \notin L$:
- When $x \in L$:

- Let $L \in ZPP$ and M be a PTM that decides L and runs in expected polytime, say p(n).

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

RP algorithm for *L*: Consider the PTM M' that on input *x*:

1) Runs M for 3.p(n) steps.

2) If M outputs something, then M' outputs the same. Else M' outputs 0.

Correctness analysis:

- When $x \notin L$: M'(x) = 0 with probability 1.
- When $x \in L$:

- Let $L \in ZPP$ and M be a PTM that decides L and runs in expected polytime, say p(n).

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

RP algorithm for *L*: Consider the PTM M' that on input *x*:

- 1) Runs M for 3.p(n) steps.
- 2) If M outputs something, then M' outputs the same. Else M' outputs 0.

Correctness analysis:

- When $x \notin L$: M'(x) = 0 with probability 1.
- When $x \in L$: Probability of M'(x) = 0

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

RP algorithm for *L*: Consider the PTM M' that on input *x*:

- 1) Runs *M* for 3.p(n) steps.
- 2) If M outputs something, then M' outputs the same. Else M' outputs 0.

Correctness analysis:

- When $x \notin L$: M'(x) = 0 with probability 1.
- When $x \in L$: Probability of M'(x) = 0 = Probability that M runs for > 3.p(n) steps

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

RP algorithm for *L*: Consider the PTM M' that on input *x*:

- 1) Runs *M* for 3.p(n) steps.
- 2) If M outputs something, then M' outputs the same. Else M' outputs 0.

Correctness analysis:

- When $x \notin L$: M'(x) = 0 with probability 1.
- When $x \in L$: Probability of M'(x) = 0 = Probability that M runs for > 3.p(n) steps $\leq \Pr[T_x \geq 3.p(n)]$

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

RP algorithm for *L*: Consider the PTM M' that on input *x*:

- 1) Runs *M* for 3.p(n) steps.
- 2) If M outputs something, then M' outputs the same. Else M' outputs 0.

Correctness analysis:

- When $x \notin L$: M'(x) = 0 with probability 1.
- When $x \in L$: Probability of M'(x) = 0 = Probability that M runs for > 3.p(n) steps $\leq \Pr[T_x \geq 3.p(n)] \leq \operatorname{Ex}(T_x) / 3.p(n)$

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

RP algorithm for *L*: Consider the PTM M' that on input *x*:

- 1) Runs *M* for 3.p(n) steps.
- 2) If M outputs something, then M' outputs the same. Else M' outputs 0.

Correctness analysis:

- When $x \notin L$: M'(x) = 0 with probability 1.
- When $x \in L$: Probability of M'(x) = 0 = Probability that M runs for > 3.p(n) steps $\leq \Pr[T_x \geq 3.p(n)] \leq \operatorname{Ex}(T_x) / 3.p(n) \leq 1/3$

Theorem: $ZPP = RP \cap coRP$.

Proof: $ZPP \subseteq RP \cap coRP$:

RP algorithm for *L*: Consider the PTM M' that on input *x*:

- 1) Runs *M* for 3.p(n) steps.
- 2) If M outputs something, then M' outputs the same. Else M' outputs 0.

Correctness analysis:

- When $x \notin L$: M'(x) = 0 with probability 1.
- When $x \in L$: Probability of M'(x) = 0 = Probability that M runs for > 3.p(n) steps $\leq \Pr[T_x \geq 3.p(n)] \leq \operatorname{Ex}(T_x) / 3.p(n) \leq 1/3$

Let $L \in ZPP$ and M be a PTM that decides L and runs in expected polytime, say p(n).

• • •

Theorem: $ZPP = RP \cap coRP$.

Proof:

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

Let $L \in RP$, coRP.

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

Let $L \in \mathbb{RP}$, coRP. Let A and B be L's RP and coRP machines with p(n) runtime. ZPP machine M for L on input x:

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

ZPP machine M for L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1.

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

ZPP machine M for L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1.

2) Runs B on x. If B outputs 0, then M also outputs 0.

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

ZPP machine M for L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1.

2) Runs B on x. If B outputs 0, then M also outputs 0.

3) Otherwise, repeat steps 1 and 2.

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

ZPP machine *M* for *L* on input *x*:

1) Runs A on x. If A outputs 1, then M also outputs 1.

2) Runs B on x. If B outputs 0, then M also outputs 0.

3) Otherwise, repeat steps 1 and 2.

Let $L \in \mathbb{RP}$, coRP. Let A and B be L's RP and coRP machines with p(n) runtime.

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

ZPP machine *M* for *L* on input *x*:

1) Runs A on x. If A outputs 1, then M also outputs 1.

2) Runs B on x. If B outputs 0, then M also outputs 0.

3) Otherwise, repeat steps 1 and 2.

Time analysis:

Let $L \in \mathbb{RP}$, coRP. Let A and B be L's RP and coRP machines with p(n) runtime.

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

ZPP machine M for L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1.

2) Runs B on x. If B outputs 0, then M also outputs 0.

3) Otherwise, repeat steps 1 and 2.

Time analysis:

Probability of M stopping in 2.p(n). *i* time

Let $L \in \mathbb{RP}$, coRP. Let A and B be L's RP and coRP machines with p(n) runtime.

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

ZPP machine M for L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1.

2) Runs B on x. If B outputs 0, then M also outputs 0.

3) Otherwise, repeat steps 1 and 2.

Time analysis:

Probability of M stopping in 2.

Let $L \in \mathbb{RP}$, coRP. Let A and B be L's RP and coRP machines with p(n) runtime.

$$p(n) \cdot i \text{ time} = \frac{2}{3} \cdot \frac{1}{3}^{i-1}$$

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

ZPP machine *M* for *L* on input *x*:

1) Runs A on x. If A outputs 1, then M also outputs 1.

2) Runs B on x. If B outputs 0, then M also outputs 0.

3) Otherwise, repeat steps 1 and 2.

Time analysis:

Probability of M stopping in 2.

M's expected running time

Let $L \in \mathbb{RP}$, coRP. Let A and B be L's RP and coRP machines with p(n) runtime.

$$p(n) \cdot i \text{ time} = \frac{2}{3} \cdot \frac{1}{3}^{i-1}$$

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

ZPP machine M for L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1.

2) Runs B on x. If B outputs 0, then M also outputs 0.

3) Otherwise, repeat steps 1 and 2.

Time analysis:

Probability of M stopping in 2.

M's expected running time =

Let $L \in \mathbb{RP}$, coRP. Let A and B be L's RP and coRP machines with p(n) runtime.

$$p(n) \cdot i \text{ time} = \frac{2}{3} \cdot \frac{1}{3}^{i-1}$$
$$\sum_{i \ge 1} 2 \cdot p(n) \cdot i \cdot \left(\frac{2}{3} \cdot \frac{1}{3}^{i-1}\right)$$

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

ZPP machine *M* for *L* on input *x*:

1) Runs A on x. If A outputs 1, then M also outputs 1.

2) Runs B on x. If B outputs 0, then M also outputs 0.

3) Otherwise, repeat steps 1 and 2.

Time analysis:

Probability of M stopping in 2.

M's expected running time =

Let $L \in \mathbb{RP}$, coRP. Let A and B be L's RP and coRP machines with p(n) runtime.

$$p(n) \cdot i \text{ time} = \frac{2}{3} \cdot \frac{1}{3}^{i-1}$$
$$\sum_{i \ge 1} 2 \cdot p(n) \cdot i \cdot \left(\frac{2}{3} \cdot \frac{1}{3}^{i-1}\right) = O(p(n))$$

Theorem: $ZPP = RP \cap coRP$.

Proof: $RP \cap coRP \subseteq ZPP$:

ZPP machine M for L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1.

2) Runs B on x. If B outputs 0, then M also outputs 0.

3) Otherwise, repeat steps 1 and 2.

Time analysis:

Probability of M stopping in 2.

M's expected running time =

Let $L \in \mathbb{RP}$, coRP. Let A and B be L's RP and coRP machines with p(n) runtime.

$$p(n) \cdot i \text{ time} = \frac{2}{3} \cdot \frac{1}{3}^{i-1}$$
$$\sum_{i \ge 1} 2 \cdot p(n) \cdot i \cdot \left(\frac{2}{3} \cdot \frac{1}{3}^{i-1}\right) = O(p(n))$$

Polynomial Identity Testing

ZEROP Problem:

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients,

decide whether it is zero on all values.

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

- **Fact:** A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

- **Fact:** A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
- **Implicit Form:** Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^n to \mathbb{Z} .

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

- **Example:** Is $x_1^2x_2 x_1x_2 + x_2$ zero on all values of x_1 and x_2 ?
- **Fact:** A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^n to \mathbb{Z} .

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

- **Example:** Is $x_1^2x_2 x_1x_2 + x_2$ zero on all values of x_1 and x_2 ?
- **Fact:** A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^n to \mathbb{Z} .

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

- **Fact:** A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
- **Implicit Form:** Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^n to \mathbb{Z} .

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

- **Fact:** A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
- **Implicit Form:** Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^n to \mathbb{Z} .

 $= (x_1 + x_2 + 1)(x_1 - x_2)$

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

- **Fact:** A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
- **Implicit Form:** Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^n to \mathbb{Z} .

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

- **Example:** Is $x_1^2x_2 x_1x_2 + x_2$ zero on all values of x_1 and x_2 ?
- **Fact:** A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

Simplest Approach for *ZEROP*:

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^n to \mathbb{Z} .

- decide whether it is zero on all values.
- **Example:** Is $x_1^2x_2 x_1x_2 + x_2$ zero on all values of x_1 and x_2 ?
- Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
- **Implicit Form:** Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^n to \mathbb{Z} .
- **Simplest Approach for** *ZEROP*:
- Given an algebraic circuit, compute the corresponding polynomial, say p(x).

- decide whether it is zero on all values.
- **Example:** Is $x_1^2x_2 x_1x_2 + x_2$ zero on all values of x_1 and x_2 ?
- **Fact:** A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
- **Implicit Form:** Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^n to \mathbb{Z} .

Simplest Approach for *ZEROP*:

- Given an algebraic circuit, compute the corresponding polynomial, say p(x). • Output 1 iff all the coefficients of the corresponding polynomial are 0.

- decide whether it is zero on all values.
- **Example:** Is $x_1^2x_2 x_1x_2 + x_2$ zero on all values of x_1 and x_2 ?
- **Fact:** A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
- **Implicit Form:** Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^n to \mathbb{Z} .

Simplest Approach for *ZEROP*:

- Given an algebraic circuit, compute the corresponding polynomial, say p(x).
- Output 1 iff all the coefficients of the corresponding polynomial are 0.

Flaw: O(n) size algebraic circuits can compute polynomials with 2^n many monomials, e.g., $\prod_{i \in [n]} (1 + x_i)$.

Schwartz-Zippel Lemma: Let $p(x_1, x_2, ..., x_m)$ be a non-zero polynomial with degree at most d.

Schwartz-Zippel Lemma: Let $p(x_1, x_2, ..., x_m)$ be a non-zero polynomial with degree at most d.

Let S be a finite set of integers.

Schwartz-Zippel Lemma: Let $p(x_1, x_2, ..., x_m)$ be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with

Schwartz-Zippel Lemma: Let $p(x_1, x_2, ..., x_m)$ be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Schwartz-Zippel Lemma: Let $p(x_1, x_2, ..., x_m)$ be a non-zero polynomial with degree at most d.

$$f_m) \neq 0] \ge 1 - \frac{d}{|S|}$$

Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

Schwartz-Zippel Lemma: Let $p(x_1, x_2, \dots, x_m)$ be a non-zero polynomial with degree at most d.

$$f_m) \neq 0] \ge 1 - \frac{d}{|S|}$$

Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.

Schwartz-Zippel Lemma: Let $p(x_1, x_2, \dots, x_m)$ be a non-zero polynomial with degree at most d.

$$m_{m}) \neq 0] \ge 1 - \frac{d}{|S|}$$

Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Evaluate $C(x_1, x_2, ..., x_n) = y$.

Schwartz-Zippel Lemma: Let $p(x_1, x_2, \dots, x_m)$ be a non-zero polynomial with degree at most d.

$$m_{m}) \neq 0] \ge 1 - \frac{d}{|S|}$$

Schwartz-Zippel Lemma: Let $p(x_1, x_2, \dots, x_m)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Evaluate $C(x_1, x_2, ..., x_n) = y$. 3) If y = 0, then accept. Otherwise, reject.

$$m_{m}) \neq 0] \ge 1 - \frac{d}{|S|}$$

Schwartz-Zippel Lemma: Let $p(x_1, x_2, ..., x_m)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Evaluate $C(x_1, x_2, ..., x_n) = y$. 3) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

$$m_m) \neq 0] \ge 1 - \frac{d}{|S|}$$

Schwartz-Zippel Lemma: Let $p(x_1, x_2, \dots, x_m)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Evaluate $C(x_1, x_2, ..., x_n) = y$. 3) If y = 0, then accept. Otherwise, reject.

Correctness Analysis: If $C \in ZEROP$, then A accepts with probability

$$m_{m}) \neq 0] \ge 1 - \frac{d}{|S|}$$

Schwartz-Zippel Lemma: Let $p(x_1, x_2, \dots, x_m)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Evaluate $C(x_1, x_2, ..., x_n) = y$. 3) If y = 0, then accept. Otherwise, reject.

Correctness Analysis: If $C \in ZEROP$, then A accepts with probability

$$f_m) \neq 0] \ge 1 - \frac{d}{|S|}$$

If $C \notin ZEROP$, then A rejects with probability

Schwartz-Zippel Lemma: Let $p(x_1, x_2, \dots, x_m)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Evaluate $C(x_1, x_2, ..., x_n) = y$. 3) If y = 0, then accept. Otherwise, reject.

Correctness Analysis: If $C \in ZEROP$, then A accepts with probability 1.

$$f_m) \neq 0] \ge 1 - \frac{d}{|S|}$$

If $C \notin ZEROP$, then A rejects with probability

Schwartz-Zippel Lemma: Let $p(x_1, x_2, \dots, x_m)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Evaluate $C(x_1, x_2, ..., x_n) = y$. 3) If y = 0, then accept. Otherwise, reject.

Correctness Analysis: If $C \in ZEROP$, then A accepts with probability 1.

$$f_m) \neq 0] \ge 1 - \frac{d}{|S|}$$

 $\frac{2^m}{10.2^m}$ If $C \notin ZEROP$, then A rejects with probability ≥ 1

Schwartz-Zippel Lemma: Let $p(x_1, x_2, \dots, x_m)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Evaluate $C(x_1, x_2, ..., x_n) = y$. 3) If y = 0, then accept. Otherwise, reject.

Correctness Analysis: If $C \in ZEROP$, then A accepts with probability 1.

$$f_m) \neq 0] \ge 1 - \frac{d}{|S|}$$

If $C \notin ZEROP$, then A rejects with probability $\geq 1 - \frac{2^m}{10.2^m}$ = 9/10

Schwartz-Zippel Lemma: Let $p(x_1, x_2, \dots, x_m)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if a_1, a_2, \ldots, a_m are randomly chosen from S with replacement, then

 $\Pr[p(a_1, a_2, ..., a_n]$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs: 1) Choose x_1, x_2, \ldots, x_n randomly from [1,2,. 2) Evaluate $C(x_1, x_2, ..., x_n) = y$. 3) If y = 0, then accept. Otherwise, reject.

Correctness Analysis: If $C \in ZEROP$, then A accepts with probability 1.

$$f_m) \neq 0] \ge 1 - \frac{d}{|S|}$$

$$\dots, 10.2^m$$
].
Flaw: y can be as large as $(10.2^m)^2$

If $C \notin ZEROP$, then A rejects with probability $\geq 1 - \frac{2^m}{10.2^m}$ = 9/10

Lemma: Let $y \in [1, (10.2^m)^{2^m}]$

Lemma: Let $y \in [1, (10.2^m)^{2^m}]$ and a k is a number chosen randomly from $[1, 2^{2^m}]$.

Lemma: Let $y \in [1, (10.2^m)^{2^m}]$ and a k is a number chosen randomly from $[1, 2^{2^m}]$. Then, with

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof:

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

of prime numbers in $[1,2^{2m}]$

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

of prime numbers in $[1,2^{2m}] \ge \frac{2^{2m}}{2m}$

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

of prime numbers in $[1,2^{2m}] \ge \frac{2^{2m}}{2m}$

(from prime number theorem)

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

of prime numbers in $[1, 2^{2m}] \ge \frac{2^{2m}}{2m}$

(from prime number theorem)

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

of prime numbers in $[1, 2^{2m}] \ge \frac{2^{2m}}{2m}$ |S|

(from prime number theorem)

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

of prime numbers in $[1, 2^{2m}] \ge \frac{2^{2m}}{2m}$ $|S| \le \log y$

(from prime number theorem)

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

(from prime number theorem)

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.
- # of prime numbers in $[1,2^{2m}] \ge \frac{2^{2m}}{2m}$ $|S| \le \log y \le 5m2^m$

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

(from prime number theorem)

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.
- # of prime numbers in $[1,2^{2m}] \ge \frac{2^{2m}}{2m}$ $|S| \le \log y \le 5m2^m \le \frac{2^{2m}}{4m}$

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

(from prime number theorem)

of prime numbers in $[1,2^{2m}]$ that are not in S

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.
- # of prime numbers in $[1,2^{2m}] \ge \frac{2^{2m}}{2m}$ $|S| \le \log y \le 5m2^m \le \frac{2^{2m}}{4m}$

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

(from prime number theorem)

of prime numbers in $[1,2^{2m}]$ that are not in $S \ge \frac{2^{2m}}{4m}$

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.
- # of prime numbers in $[1, 2^{2m}] \ge \frac{2^{2m}}{2m}$ $|S| \le \log y \le 5m2^m \le \frac{2^{2m}}{4m}$

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

(from prime number theorem)

of prime numbers in $[1,2^{2m}]$ that are

Probability that k does not divide y

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.
- # of prime numbers in $[1,2^{2m}] \ge \frac{2^{2m}}{2m}$ $|S| \le \log y \le 5m2^m \le \frac{2^{2m}}{4m}$

re not in
$$S \ge \frac{2^{2m}}{4m}$$

$$\ge \frac{2^{2m}/4m}{2^{2m}} = \frac{1}{4m}$$

probability at least $\delta = \frac{1}{4m}$, k does not divide y.

Proof: Let $S = \{p_1, p_2, \dots, p_l\}$ denote the set of all prime factors of y.

(from prime number theorem)

of prime numbers in $[1,2^{2m}]$ that are

Probability that k does not divide v

- Sufficient to show that with probability $\geq \delta$, k will be a prime number number not in S.
- # of prime numbers in $[1,2^{2m}] \ge \frac{2^{2m}}{2m}$ $|S| \le \log y \le 5m2^m \le \frac{2^{2m}}{4m}$

re not in
$$S \ge \frac{2^{2m}}{4m}$$

$$\ge \frac{2^{2m}/4m}{2^{2m}} = \frac{1}{4m}$$

Algorithm **B** for **ZEROP** for a circuit **C** of size **m** that takes **n** input:

Algorithm **B** for **ZEROP** for a circuit **C** of size **m** that takes **n** input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.

Algorithm **B** for **ZEROP** for a circuit **C** of size **m** that takes **n** input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose k randomly from $[1,2^{2m}]$.

Algorithm **B** for **ZEROP** for a circuit **C** of size **m** that takes **n** input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose k randomly from $[1,2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$.

Algorithm *B* for *ZEROP* for a circuit *C* of size *m* that takes *n* input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose *k* randomly from $[1, 2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$. 4) If y = 0, then accept. Otherwise, reject.

Algorithm *B* for *ZEROP* for a circuit *C* of size *m* that takes *n* input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose *k* randomly from $[1, 2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$. 4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

Algorithm **B** for **ZEROP** for a circuit **C** of size **m** that takes **n** input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose k randomly from $[1,2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$. 4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

If $C \in ZEROP$, then A accepts with probability

Algorithm **B** for **ZEROP** for a circuit **C** of size **m** that takes **n** input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose k randomly from $[1,2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$. 4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

If $C \in ZEROP$, then A accepts with probability 1.

Algorithm **B** for **ZEROP** for a circuit **C** of size **m** that takes **n** input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose k randomly from $[1,2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$. 4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

If $C \in ZEROP$, then A accepts with probability 1. If $C \notin ZEROP$, then A rejects with probability

Algorithm **B** for **ZEROP** for a circuit **C** of size **m** that takes **n** input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose k randomly from $[1,2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$. 4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

If $C \in ZEROP$, then A accepts with probability 1. If $C \notin ZEROP$, then A rejects with probability $\geq (9/10)$

Algorithm **B** for **ZEROP** for a circuit **C** of size **m** that takes **n** input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose k randomly from $[1,2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$. 4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

If $C \in ZEROP$, then A accepts with probability 1.

- If $C \notin ZEROP$, then A rejects with probability $\geq (9/10) \cdot (1/4m)$

Algorithm **B** for **ZEROP** for a circuit **C** of size **m** that takes **n** input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose k randomly from $[1,2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$. 4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

- If $C \in ZEROP$, then A accepts with probability 1.
- If $C \notin ZEROP$, then A rejects with probability $\geq (9/10) \cdot (1/4m)$

How can we improve the probability to a constant?

Algorithm **B** for **ZEROP** for a circuit **C** of size **m** that takes **n** input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose k randomly from $[1,2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$. 4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

- If $C \in ZEROP$, then A accepts with probability 1.
- If $C \notin ZEROP$, then A rejects with probability $\geq (9/10) \cdot (1/4m)$

How can we improve the probability to a constant?

Repeat *B* O(m) times and accept iff y = 0 on all iterations.

Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input:

Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.

Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose k randomly from $[1,2^{2m}]$.

Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose k randomly from $[1,2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$.

Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$. 2) Choose *k* randomly from $[1, 2^{2m}]$. 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$. 4) Repeat 2), 3) 40m/9 times.
- Algorithm D for ZEROP for a circuit C of size m that takes n input:
- 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.
- 2) Choose k randomly from $[1,2^{2m}]$.
- 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$.
- 4) Repeat 2), 3) 40m/9 times.
- 5) Accept iff y = 0 on all iterations.

- Algorithm D for ZEROP for a circuit C of size m that takes n input:
- 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.
- 2) Choose k randomly from $[1,2^{2m}]$.
- 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$.
- 4) Repeat 2), 3) 40m/9 times.
- 5) Accept iff y = 0 on all iterations.

Correctness Analysis:

- Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input:
- 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.
- 2) Choose k randomly from $[1,2^{2m}]$.
- 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$.
- 4) Repeat 2), 3) 40m/9 times.
- 5) Accept iff y = 0 on all iterations.

Correctness Analysis:

- Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input:
- 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.
- 2) Choose k randomly from $[1,2^{2m}]$.
- 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$.
- 4) Repeat 2), 3) 40m/9 times.
- 5) Accept iff y = 0 on all iterations.

Correctness Analysis:

- Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.
- 2) Choose k randomly from $[1,2^{2m}]$.
- 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$.
- 4) Repeat 2), 3) 40m/9 times.
- 5) Accept iff y = 0 on all iterations.

Correctness Analysis:

If $C \in ZEROP$, then A accepts with probability 1.

- Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.
- 2) Choose k randomly from $[1,2^{2m}]$.
- 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$.
- 4) Repeat 2), 3) 40m/9 times.
- 5) Accept iff y = 0 on all iterations.

Correctness Analysis:

If $C \in ZEROP$, then A accepts with probability 1. If $C \notin ZEROP$, then A accepts with probability $\leq \left(1 - \frac{9}{40m}\right)$

- Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.
- 2) Choose k randomly from $[1,2^{2m}]$.
- 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$.
- 4) Repeat 2), 3) 40m/9 times.
- 5) Accept iff y = 0 on all iterations.

Correctness Analysis:

- Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.
- 2) Choose k randomly from $[1,2^{2m}]$.
- 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$.
- 4) Repeat 2), 3) 40m/9 times.
- 5) Accept iff y = 0 on all iterations.

Correctness Analysis:

- Algorithm *D* for *ZEROP* for a circuit *C* of size *m* that takes *n* input: 1) Choose $x_1, x_2, ..., x_n$ randomly from $[1, 2, ..., 10.2^m]$.
- 2) Choose k randomly from $[1,2^{2m}]$.
- 3) Evaluate $C(x_1, x_2, ..., x_n) \mod k = y$.
- 4) Repeat 2), 3) 40m/9 times.
- 5) Accept iff y = 0 on all iterations.

Correctness Analysis:

