Lecture 35

$$
\text { ZPP = RP } \cap \operatorname{coRP}, \text { PIT }
$$

$\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{coRP}$

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.
Proof:

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.
Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

ZPP = RP $\cap \operatorname{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap$ coRP.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.

ZPP = RP $\cap \operatorname{coRP}$

Theorem: $Z P P=R P \cap \operatorname{coRP}$.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

ZPP = RP $\cap \operatorname{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap$ coRP.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.

ZPP = RP $\cap \operatorname{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap$ coRP.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.
2) If M outputs something, then M^{\prime} outputs the same. Else M^{\prime} outputs 0 .

ZPP = RP $\cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.
2) If M outputs something, then M^{\prime} outputs the same. Else M^{\prime} outputs 0 .

Correctness analysis:

ZPP = RP $\cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.
2) If M outputs something, then M^{\prime} outputs the same. Else M^{\prime} outputs 0 .

Correctness analysis:

- When $x \notin L$:

ZPP = RP $\cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.
2) If M outputs something, then M^{\prime} outputs the same. Else M^{\prime} outputs 0 .

Correctness analysis:

- When $x \notin L$:
- When $x \in L$:

ZPP = RP $\cap \operatorname{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{coRP}$.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.
2) If M outputs something, then M^{\prime} outputs the same. Else M^{\prime} outputs 0 .

Correctness analysis:

- When $x \notin L: M^{\prime}(x)=0$ with probability 1 .
- When $x \in L$:

ZPP = RP $\cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.
2) If M outputs something, then M^{\prime} outputs the same. Else M^{\prime} outputs 0 .

Correctness analysis:

- When $x \notin L: M^{\prime}(x)=0$ with probability 1 .
- When $x \in L$: Probability of $M^{\prime}(x)=0$

ZPP = RP $\cap \operatorname{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{coRP}$.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.
2) If M outputs something, then M^{\prime} outputs the same. Else M^{\prime} outputs 0 .

Correctness analysis:

- When $x \notin L: M^{\prime}(x)=0$ with probability 1 .
- When $x \in L$: Probability of $M^{\prime}(x)=0=$ Probability that M runs for $>3 . p(n)$ steps

ZPP = RP $\cap \operatorname{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{coRP}$.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.
2) If M outputs something, then M^{\prime} outputs the same. Else M^{\prime} outputs 0 .

Correctness analysis:

- When $x \notin L: M^{\prime}(x)=0$ with probability 1 .
- When $x \in L$: Probability of $M^{\prime}(x)=0=$ Probability that M runs for $>3 . p(n)$ steps

$$
\leq \operatorname{Pr}\left[T_{x} \geq 3 . p(n)\right]
$$

ZPP = RP $\cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.
2) If M outputs something, then M^{\prime} outputs the same. Else M^{\prime} outputs 0 .

Correctness analysis:

- When $x \notin L: M^{\prime}(x)=0$ with probability 1 .
- When $x \in L$: Probability of $M^{\prime}(x)=0=$ Probability that M runs for >3. $p(n)$ steps

$$
\leq \operatorname{Pr}\left[T_{x} \geq 3 \cdot p(n)\right] \leq \operatorname{Ex}\left(T_{x}\right) / 3 \cdot p(n)
$$

ZPP = RP $\cap \operatorname{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{coRP}$.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.
2) If M outputs something, then M^{\prime} outputs the same. Else M^{\prime} outputs 0 .

Correctness analysis:

- When $x \notin L: M^{\prime}(x)=0$ with probability 1 .
- When $x \in L$: Probability of $M^{\prime}(x)=0=$ Probability that M runs for >3. $p(n)$ steps

$$
\leq \operatorname{Pr}\left[T_{x} \geq 3 \cdot p(n)\right] \leq \operatorname{Ex}\left(T_{x}\right) / 3 \cdot p(n) \leq 1 / 3
$$

ZPP = RP $\cap \operatorname{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{coRP}$.

Proof: $\mathrm{ZPP} \subseteq \mathrm{RP} \cap$ coRP:

Let $L \in$ ZPP and M be a PTM that decides L and runs in expected polytime, say $p(n)$.
RP algorithm for L : Consider the PTM M^{\prime} that on input x :

1) Runs M for $3 . p(n)$ steps.
2) If M outputs something, then M^{\prime} outputs the same. Else M^{\prime} outputs 0 .

Correctness analysis:

- When $x \notin L: M^{\prime}(x)=0$ with probability 1 .
- When $x \in L$: Probability of $M^{\prime}(x)=0=$ Probability that M runs for >3. $p(n)$ steps

$$
\leq \operatorname{Pr}\left[T_{x} \geq 3 \cdot p(n)\right] \leq \operatorname{Ex}\left(T_{x}\right) / 3 \cdot p(n) \leq 1 / 3
$$

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.
Proof:

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.
Proof: RP \cap coRP \subseteq ZPP:

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.
Proof: RP \cap coRP \subseteq ZPP:
Let $L \in \mathrm{RP}$, coRP.

ZPP = RP $\cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.
Proof: RP \cap coRP \subseteq ZPP:
Let $L \in \mathrm{RP}$, coRP. Let A and B be L 's $\mathbf{R P}$ and coRP machines with $p(n)$ runtime.

ZPP = RP $\cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.
Proof: RP \cap coRP \subseteq ZPP:
Let $L \in \mathrm{RP}$, coRP. Let A and B be L 's $\mathbf{R P}$ and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

ZPP = RP $\cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: RP \cap coRP \subseteq ZPP:

Let $L \in \mathrm{RP}$, coRP. Let A and B be L 's $\mathbf{R P}$ and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

1) Runs A on x. If A outputs 1 , then M also outputs 1 .

ZPP = RP $\cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: RP \cap coRP \subseteq ZPP:

Let $L \in \mathrm{RP}$, coRP. Let A and B be L 's $\mathbf{R P}$ and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

1) Runs A on x. If A outputs 1 , then M also outputs 1 .
2) Runs B on x. If B outputs 0 , then M also outputs 0 .

$\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: RP \cap coRP \subseteq ZPP:

Let $L \in \mathbf{R P}$, coRP. Let A and B be L's $\mathbf{R P}$ and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

1) Runs A on x. If A outputs 1 , then M also outputs 1 .
2) Runs B on x. If B outputs 0 , then M also outputs 0 .
3) Otherwise, repeat steps 1 and 2 .

ZPP = RP $\cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: RP \cap coRP \subseteq ZPP:

Let $L \in \mathrm{RP}$, coRP. Let A and B be L 's $\mathbf{R P}$ and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

1) Runs A on x. If A outputs 1 , then M also outputs 1 .
2) Runs B on x. If B outputs 0 , then M also outputs 0 .
3) Otherwise, repeat steps 1 and 2 .

ZPP = RP $\cap \operatorname{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: RP \cap coRP \subseteq ZPP:

Let $L \in \mathrm{RP}$, coRP. Let A and B be L 's $\mathbf{R P}$ and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

1) Runs A on x. If A outputs 1 , then M also outputs 1 .
2) Runs B on x. If B outputs 0 , then M also outputs 0 .
3) Otherwise, repeat steps 1 and 2 .

Time analysis:

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{coRP}$.

Proof: RP \cap coRP \subseteq ZPP:

Let $L \in \mathrm{RP}$, coRP. Let A and B be L 's $\mathbf{R P}$ and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

1) Runs A on x. If A outputs 1 , then M also outputs 1 .
2) Runs B on x. If B outputs 0 , then M also outputs 0 .
3) Otherwise, repeat steps 1 and 2 .

Time analysis:
Probability of M stopping in 2.p(n). i time

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: RP \cap coRP \subseteq ZPP:

Let $L \in \mathbf{R P}$, coRP. Let A and B be L's RP and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

1) Runs A on x. If A outputs 1 , then M also outputs 1 .
2) Runs B on x. If B outputs 0 , then M also outputs 0 .
3) Otherwise, repeat steps 1 and 2 .

Time analysis:
Probability of M stopping in $2 \cdot p(n) \cdot i$ time $=\frac{2}{3} \cdot \frac{1}{3}^{i-1}$

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: ZPP $=\mathrm{RP} \cap$ coRP.

Proof: RP \cap coRP \subseteq ZPP:

Let $L \in \mathbf{R P}$, coRP. Let A and B be L's RP and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

1) Runs A on x. If A outputs 1 , then M also outputs 1 .
2) Runs B on x. If B outputs 0 , then M also outputs 0 .
3) Otherwise, repeat steps 1 and 2 .

Time analysis:
Probability of M stopping in $2 \cdot p(n) \cdot i$ time $=\frac{2}{3} \cdot \frac{1}{3}{ }^{i-1}$
M's expected running time

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap$ coRP.

Proof: RP \cap coRP \subseteq ZPP:

Let $L \in \mathrm{RP}$, coRP. Let A and B be L 's $\mathbf{R P}$ and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

1) Runs A on x. If A outputs 1 , then M also outputs 1 .
2) Runs B on x. If B outputs 0 , then M also outputs 0 .
3) Otherwise, repeat steps 1 and 2 .

Time analysis:
Probability of M stopping in $2 \cdot p(n) \cdot i$ time $=\frac{2}{3} \cdot \frac{1}{3}^{i-1}$
M's expected running time $=\sum_{i \geq 1} 2 \cdot p(n) \cdot i \cdot\left(\frac{2}{3} \cdot \frac{1}{3}^{i-1}\right)$

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{coRP}$.

Proof: RP \cap coRP \subseteq ZPP:

Let $L \in \mathbf{R P}$, coRP. Let A and B be L's $\mathbf{R P}$ and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

1) Runs A on x. If A outputs 1 , then M also outputs 1 .
2) Runs B on x. If B outputs 0 , then M also outputs 0 .
3) Otherwise, repeat steps 1 and 2 .

Time analysis:

> Probability of M stopping in $2 \cdot p(n) \cdot i$ time $=\frac{2}{3} \cdot \frac{1}{3}^{i-1}$
> M's expected running time $=\sum_{i \geq 1} 2 \cdot p(n) \cdot i \cdot\left(\frac{2}{3} \cdot \frac{1}{3}^{i-1}\right)=O(p(n))$

$\mathrm{ZPP}=\mathrm{RP} \cap \mathrm{coRP}$

Theorem: $\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{coRP}$.

Proof: RP \cap coRP \subseteq ZPP:

Let $L \in \mathbf{R P}$, coRP. Let A and B be L's $\mathbf{R P}$ and coRP machines with $p(n)$ runtime.
ZPP machine M for L on input x :

1) Runs A on x. If A outputs 1 , then M also outputs 1 .
2) Runs B on x. If B outputs 0 , then M also outputs 0 .
3) Otherwise, repeat steps 1 and 2 .

Time analysis:

> Probability of M stopping in $2 \cdot p(n) \cdot i$ time $=\frac{2}{3} \cdot \frac{1}{3}^{i-1}$
> M's expected running time $=\sum_{i \geq 1} 2 \cdot p(n) \cdot i \cdot\left(\frac{2}{3} \cdot \frac{1}{3}^{i-1}\right)=O(p(n))$

Polynomial Identity Testing

Polynomial Identity Testing

ZEROP Problem:

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients,

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?
Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?
Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^{n} to \mathbb{Z}.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?
Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^{n} to \mathbb{Z}.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?
Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^{n} to \mathbb{Z}.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?
Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^{n} to \mathbb{Z}.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?
Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^{n} to \mathbb{Z}.

$$
=\left(x_{1}+x_{2}+1\right)\left(x_{1}-x_{2}\right)
$$

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?
Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^{n} to \mathbb{Z}.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?
Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^{n} to \mathbb{Z}.

Simplest Approach for ZEROP:

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?
Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^{n} to \mathbb{Z}.

Simplest Approach for ZEROP:

- Given an algebraic circuit, compute the corresponding polynomial, say $p(x)$.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?
Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^{n} to \mathbb{Z}.

Simplest Approach for ZEROP:

- Given an algebraic circuit, compute the corresponding polynomial, say $p(x)$.
- Output 1 iff all the coefficients of the corresponding polynomial are 0 .

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefficients, decide whether it is zero on all values.

Example: Is $x_{1}^{2} x_{2}-x_{1} x_{2}+x_{2}$ zero on all values of x_{1} and x_{2} ?
Fact: A polynomial is zero on all values if and only if each monomial has 0 as coefficient.
Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from \mathbb{Z}^{n} to \mathbb{Z}.

Simplest Approach for ZEROP:

- Given an algebraic circuit, compute the corresponding polynomial, say $p(x)$.
- Output 1 iff all the coefficients of the corresponding polynomial are 0 .

Flaw: $O(n)$ size algebraic circuits can compute polynomials with 2^{n} many monomials, e.g., $\Pi_{i \in[n]}\left(1+x_{i}\right)$.

Polynomial Identity Testing

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d.

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers.

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d.
Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d.
Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=y$.

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=y$.
3) If $y=0$, then accept. Otherwise, reject.

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=y$.
3) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis:

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=y$.
3) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis: If $C \in Z E R O P$, then A accepts with probability

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=y$.
3) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis: If $C \in Z E R O P$, then A accepts with probability
If $C \notin$ ZEROP, then A rejects with probability

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=y$.
3) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis: If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin$ ZEROP, then A rejects with probability

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=y$.
3) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis: If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin Z E R O P$, then A rejects with probability $\geq 1-\frac{2^{m}}{10.2^{m}}$

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=y$.
3) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis: If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin Z E R O P$, then A rejects with probability $\geq 1-\frac{2^{m}}{10.2^{m}}=9 / 10$

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero polynomial with degree at most d. Let S be a finite set of integers. Then, if $a_{1}, a_{2}, \ldots, a_{m}$ are randomly chosen from S with replacement, then

$$
\operatorname{Pr}\left[p\left(a_{1}, a_{2}, \ldots, a_{m}\right) \neq 0\right] \geq 1-\frac{d}{|S|}
$$

Algorithm A for ZEROP for a circuit C of size m that takes n inputs:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.)
2) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=y$.

Flaw: y can be as large as $\left(10.2^{m}\right)^{2^{m}}$.
3) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis: If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin Z E R O P$, then A rejects with probability $\geq 1-\frac{2^{m}}{10.2^{m}}=9 / 10$

Polynomial Identity Testing

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$.

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof:

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.
\# of prime numbers in $\left[1,2^{2 m}\right]$

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.

$$
\text { \# of prime numbers in }\left[1,2^{2 m}\right] \geq \frac{2^{2 m}}{2 m}
$$

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.

$$
\begin{aligned}
& \text { \# of prime numbers in }\left[1,2^{2 m}\right] \geq \frac{2^{2 m}}{2 m} \\
& \text { (from prime number theorem) }
\end{aligned}
$$

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.

$$
\begin{aligned}
& \text { \# of prime numbers in }\left[1,2^{2 m}\right] \geq \frac{2^{2 m}}{2 m} \\
& \quad \text { (from prime number theorem) }
\end{aligned}
$$

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.

$$
\left.\begin{aligned}
& \text { \# of prime numbers in }\left[1,2^{2 m}\right] \geq \frac{2^{2 m}}{2 m} \\
& \quad \text { (from prime number theorem) }
\end{aligned} \right\rvert\,
$$

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.

$$
\left.\begin{aligned}
& \text { \# of prime numbers in }\left[1,2^{2 m}\right] \geq \frac{2^{2 m}}{2 m} \\
& \quad \text { (from prime number theorem) }
\end{aligned}|\quad| S \right\rvert\, \leq \log y
$$

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.

$$
\left.\begin{aligned}
& \text { \# of prime numbers in }\left[1,2^{2 m}\right] \geq \frac{2^{2 m}}{2 m} \\
& \quad \text { (from prime number theorem) }
\end{aligned}|\quad| S \right\rvert\, \leq \log y \leq 5 m 2^{m}
$$

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.

$$
\text { \# of prime numbers in }\left[1,2^{2 m}\right] \geq \frac{2^{2 m}}{2 m} \quad|S| \leq \log y \leq 5 m 2^{m} \leq \frac{2^{2 m}}{4 m}
$$

(from prime number theorem)

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.
Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.

$$
\text { \# of prime numbers in }\left[1,2^{2 m}\right] \geq \frac{2^{2 m}}{2 m} \quad|\quad| S \left\lvert\, \leq \log y \leq 5 m 2^{m} \leq \frac{2^{2 m}}{4 m}\right.
$$

(from prime number theorem)
\# of prime numbers in [$1,2^{2 m}$] that are not in S

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.

$$
\text { \# of prime numbers in }\left[1,2^{2 m}\right] \geq \frac{2^{2 m}}{2 m} \quad|\quad| S \left\lvert\, \leq \log y \leq 5 m 2^{m} \leq \frac{2^{2 m}}{4 m}\right.
$$

(from prime number theorem)
\# of prime numbers in $\left[1,2^{2 m}\right]$ that are not in $S \geq \frac{2^{2 m}}{4 m}$

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.
\# of prime numbers in $\left[1,2^{2 m}\right] \geq \frac{2^{2 m}}{2 m} \quad|\quad| S \left\lvert\, \leq \log y \leq 5 m 2^{m} \leq \frac{2^{2 m}}{4 m}\right.$ (from prime number theorem)
\# of prime numbers in $\left[1,2^{2 m}\right]$ that are not in $S \geq \frac{2^{2 m}}{4 m}$
Probability that k does not divide $y \geq \frac{2^{2 m} / 4 m}{2^{2 m}}=\frac{1}{4 m}$

Polynomial Identity Testing

Lemma: Let $y \in\left[1,\left(10.2^{m}\right)^{2^{m}}\right]$ and $a k$ is a number chosen randomly from $\left[1,2^{2 m}\right]$. Then, with probability at least $\delta=\frac{1}{4 m}, k$ does not divide y.

Proof: Let $S=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ denote the set of all prime factors of y.
Sufficient to show that with probability $\geq \delta, k$ will be a prime number number not in S.
\# of prime numbers in $\left[1,2^{2 m}\right] \geq \frac{2^{2 m}}{2 m} \quad|\quad| S \left\lvert\, \leq \log y \leq 5 m 2^{m} \leq \frac{2^{2 m}}{4 m}\right.$ (from prime number theorem)
\# of prime numbers in $\left[1,2^{2 m}\right]$ that are not in $S \geq \frac{2^{2 m}}{4 m}$
Probability that k does not divide $y \geq \frac{2^{2 m} / 4 m}{2^{2 m}}=\frac{1}{4 m}$

Polynomial Identity Testing

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) If $y=0$, then accept. Otherwise, reject.

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis:

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability 1 .

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin$ ZEROP, then A rejects with probability

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin$ ZEROP, then A rejects with probability $\geq(9 / 10)$

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin Z E R O P$, then A rejects with probability $\geq(9 / 10) .(1 / 4 m)$

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin Z E R O P$, then A rejects with probability $\geq(9 / 10) .(1 / 4 m)$
How can we improve the probability to a constant?

Polynomial Identity Testing

Algorithm B for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) If $y=0$, then accept. Otherwise, reject.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin Z E R O P$, then A rejects with probability $\geq(9 / 10)$. $(1 / 4 m)$
How can we improve the probability to a constant?
Repeat $B O(m)$ times and accept iff $y=0$ on all iterations.

Polynomial Identity Testing

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) Repeat 2), 3) $40 \mathrm{~m} / 9$ times.

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) Repeat 2), 3) $40 \mathrm{~m} / 9$ times.
5) Accept iff $y=0$ on all iterations.

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) Repeat 2), 3) $40 \mathrm{~m} / 9$ times.
5) Accept iff $y=0$ on all iterations.

Correctness Analysis:

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) Repeat 2), 3) $40 \mathrm{~m} / 9$ times.
5) Accept iff $y=0$ on all iterations.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) Repeat 2), 3) $40 \mathrm{~m} / 9$ times.
5) Accept iff $y=0$ on all iterations.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability 1 .

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) Repeat 2), 3) $40 \mathrm{~m} / 9$ times.
5) Accept iff $y=0$ on all iterations.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin Z E R O P$, then A accepts with probability

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) Repeat 2), 3) $40 \mathrm{~m} / 9$ times.
5) Accept iff $y=0$ on all iterations.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin Z E R O P$, then A accepts with probability $\leq\left(1-\frac{9}{40 m}\right)$

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) Repeat 2), 3) $40 \mathrm{~m} / 9$ times.
5) Accept iff $y=0$ on all iterations.

Correctness Analysis:
If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin Z E R O P$, then A accepts with probability $\leq\left(1-\frac{9}{40 m}\right)^{40 m / 9}$

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) Repeat 2), 3) $40 \mathrm{~m} / 9$ times.
5) Accept iff $y=0$ on all iterations.

Correctness Analysis:

If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin Z E R O P$, then A accepts with probability $\leq\left(1-\frac{9}{40 m}\right)^{40 m / 9} \leq 1 / e$

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose $x_{1}, x_{2}, \ldots, x_{n}$ randomly from $\left[1,2, \ldots \ldots, 10.2^{m}\right]$.
2) Choose k randomly from $\left[1,2^{2 m}\right]$.
3) Evaluate $C\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) \bmod k=y$.
4) Repeat 2), 3) $40 \mathrm{~m} / 9$ times.
5) Accept iff $y=0$ on all iterations.

Correctness Analysis:

If $C \in Z E R O P$, then A accepts with probability 1 .
If $C \notin Z E R O P$, then A accepts with probability $\leq\left(1-\frac{9}{40 m}\right)^{40 m / 9} \leq 1 / e$

