Lecture 35

ZPP = RP N coRP, PIT

ZPP = RP N coRP

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof:

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:
Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:
Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:
Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:
Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

2) If M outputs something, then M’ outputs the same. Else M’ outputs 0.

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof: /PP C RP N coRP:
Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

2) If M outputs something, then M’ outputs the same. Else M’ outputs 0.

Correctness analysis:

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof: /PP C RP N coRP:
Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

2) If M outputs something, then M’ outputs the same. Else M’ outputs 0.

Correctness analysis:

® \Whenx & L:

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:

Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

2) If M outputs something, then M’ outputs the same. Else M’ outputs 0.

Correctness analysis:

® \Whenx & L:
® Whenx € L:

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:

Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

2) If M outputs something, then M’ outputs the same. Else M’ outputs 0.

Correctness analysis:

® When x & L: M'(x) = 0 with probability 1.
® \When x € L:

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:

Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

2) If M outputs something, then M’ outputs the same. Else M’ outputs 0.

Correctness analysis:
® When x & L: M'(x) = 0 with probability 1.
® \When x € L: Probability of M'(x) =0

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:

Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

2) If M outputs something, then M’ outputs the same. Else M’ outputs 0.

Correctness analysis:
® When x & L: M'(x) = 0 with probability 1.
® \When x € L: Probability of M'(x) =0 = Probability that M runs for > 3.p(n) steps

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:

Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

2) If M outputs something, then M’ outputs the same. Else M’ outputs 0.

Correctness analysis:

® When x & L: M'(x) = 0 with probability 1.

® \When x € L: Probability of M'(x) =0 = Probability that M runs for > 3.p(n) steps
< Pr[T, > 3.p(n)]

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:

Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

2) If M outputs something, then M’ outputs the same. Else M’ outputs 0.

Correctness analysis:

® When x & L: M'(x) = 0 with probability 1.

® \When x € L: Probability of M'(x) =0 = Probability that M runs for > 3.p(n) steps
< Pr|T, > 3.p(n)] < Ex(T,) /3.p(n)

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:

Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

2) If M outputs something, then M’ outputs the same. Else M’ outputs 0.

Correctness analysis:

® When x & L: M'(x) = 0 with probability 1.

® \When x € L: Probability of M'(x) =0 = Probability that M runs for > 3.p(n) steps
< Pr[T, >3.p(n)] < Ex(T,)/3.p(n) < 1/3

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: /PP C RP N coRP:

Let L € ZPP and M be a PTM that decides L and runs in expected polytime, say p(n).

RP algorithm for L: Consider the PTM M’ that on input x:
1) Runs M for 3.p(n) steps.

2) If M outputs something, then M’ outputs the same. Else M’ outputs 0.

Correctness analysis:

® When x & L: M'(x) = 0 with probability 1.

® \When x € L: Probability of M'(x) =0 = Probability that M runs for > 3.p(n) steps
< Pr[T, >3.p(n)] < Ex(T,)/3.p(n) < 1/3

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof:

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: RP N coRP C ZPP:

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: RP N coRP C ZPP:
Let L. € RP, coRP.

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP machine M tor L on input x:

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP machine M tor L on input x:
1) Runs A on x. If A outputs 1, then M also outputs 1.

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.
ZPP machine M tor L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1.
2) Runs B on x. It B outputs 0, then M also outputs 0.

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.
Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP machine M tor L on input x:
1) Runs A on x. If A outputs 1, then M also outputs 1.
2) Runs B on x. It B outputs 0, then M also outputs 0.

3) Otherwise, repeat steps 1 and 2.

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP machine M tor L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1. |
» M always gives the right answer.

2) Runs B on x. It B outputs 0, then M also outputs 0. |

3) Otherwise, repeat steps 1 and 2.

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP machine M tor L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1. |
» M always gives the right answer.

2) Runs B on x. It B outputs 0, then M also outputs 0. |

3) Otherwise, repeat steps 1 and 2.

Time analysis:

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP machine M tor L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1. |
» M always gives the right answer.

2) Runs B on x. It B outputs 0, then M also outputs 0. |

3) Otherwise, repeat steps 1 and 2.

Time analysis:

Probability ot M stopping in 2.p(n) .1 time

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP machine M tor L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1. |
» M always gives the right answer.

2) Runs B on x. It B outputs 0, then M also outputs 0. |

3) Otherwise, repeat steps 1 and 2.

Time analysis: s
2 17

3 3

Probability ot M stopping in 2.p(n).itime =

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP machine M tor L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1. |
» M always gives the right answer.

2) Runs B on x. It B outputs 0, then M also outputs 0. |

3) Otherwise, repeat steps 1 and 2.

Time analysis: s
2 17

3 3

Probability ot M stopping in 2.p(n).itime =

M's expected running time

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP machine M tor L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1. |
» M always gives the right answer.

2) Runs B on x. It B outputs 0, then M also outputs 0. |

3) Otherwise, repeat steps 1 and 2.

Time analysis: s
2 17

3 3

M's expected running time = Z 2.p(n).1. (3 3 >
i>1

Probability ot M stopping in 2.p(n).itime =

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP machine M tor L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1. |
» M always gives the right answer.

2) Runs B on x. It B outputs 0, then M also outputs 0. |

3) Otherwise, repeat steps 1 and 2.

Time analysis: s
2 17

3 3
, - (2 17
M's expected running time = Z 2.p(n).1. 33 = 0O(pn))

1>1

Probability ot M stopping in 2.p(n).itime =

ZPP = RP N coRP

Theorem: ZPP = RP N coRP.

Proof: RP N coRP C ZPP:
Let L € RP, coRP. Let A and B be L’s RP and coRP machines with p(n) runtime.

ZPP machine M tor L on input x:

1) Runs A on x. If A outputs 1, then M also outputs 1. |
» M always gives the right answer.

2) Runs B on x. It B outputs 0, then M also outputs 0. |

3) Otherwise, repeat steps 1 and 2.

Time analysis: s
2 17

3 3
, - (2 17
M's expected running time = Z 2.p(n).1. 33 = 0O(pn))

1>1

Probability ot M stopping in 2.p(n).itime =

Polynomial Identity Testing

Polynomial Identity Testing

ZEROP Problem:

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,

decide whether it is zero on all values.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Fact: A polynomial is zero on all values it and only it each monomial has O as coefticient.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Fact: A polynomial is zero on all values it and only it each monomial has O as coefticient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from Z" to Z.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Fact: A polynomial is zero on all values it and only it each monomial has O as coefticient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from Z" to Z.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Fact: A polynomial is zero on all values it and only it each monomial has O as coefticient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from Z" to Z.

1 X1 X

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Fact: A polynomial is zero on all values it and only it each monomial has O as coefticient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from Z" to Z.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Fact: A polynomial is zero on all values it and only it each monomial has O as coefticient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from Z" to Z.

(X1 +x, + D(x; — x,)

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Fact: A polynomial is zero on all values it and only it each monomial has O as coefticient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from Z" to Z.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Fact: A polynomial is zero on all values it and only it each monomial has O as coefticient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from Z" to Z.

Simplest Approach for ZEROP:

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Fact: A polynomial is zero on all values it and only it each monomial has O as coefticient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from Z" to Z.

Simplest Approach for ZEROP:

® Given an algebraic circuit, compute the corresponding polynomial, say p(x).

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Fact: A polynomial is zero on all values it and only it each monomial has O as coefticient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from Z" to Z.

Simplest Approach for ZEROP:

® Given an algebraic circuit, compute the corresponding polynomial, say p(x).

e Output 1 it all the coefficients of the corresponding polynomial are O.

Polynomial Identity Testing

ZEROP Problem: Given a multivariate polynomial in an implicit form with integer coefticients,
decide whether it is zero on all values.

Example: Is xlzxz — XX, + X, zero on all values of x; and x,?

Fact: A polynomial is zero on all values it and only it each monomial has O as coefticient.

Implicit Form: Polynomial is given as an algebraic circuit that defines a polynomial from Z" to Z.

Simplest Approach for ZEROP:

® Given an algebraic circuit, compute the corresponding polynomial, say p(x).

e Output 1 it all the coefficients of the corresponding polynomial are O.

\Q

Flaw: O(n) size algebraic cireuits can compute polynomials with 2" many monomdals, e.g., I;cp, (1 + X))

i

Polynomial Identity Testing

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers.

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Algorithm A for ZEROP tor a circuit C of size m that takes n inputs:

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Algorithm A for ZEROP tor a circuit C of size m that takes n inputs:

1) Choose xy, x,, ..., x, randomly from [1,2,...... ,10.2™.

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Algorithm A for ZEROP tor a circuit C of size m that takes n inputs:
1) Choose xy, x,, ..., x, randomly from [1,2,...... ,10.2™.

2) Evaluate C(x, x,, X)) = .

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Algorithm A for ZEROP tor a circuit C of size m that takes n inputs:
1) Choose xy, x,, ..., x, randomly from [1,2,...... ,10.2™.

2) Evaluate C(x, x5, X)) = .

3) It y = 0, then accept. Otherwise, reject.

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Algorithm A for ZEROP tor a circuit C of size m that takes n inputs:
1) Choose xy, x,, ..., x, randomly from [1,2,...... ,10.2™.

2) Evaluate C(x, x5, X)) = .

3) It y = 0, then accept. Otherwise, reject.

Correctness Analysis:

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Algorithm A for ZEROP tor a circuit C of size m that takes n inputs:
1) Choose xy, x,, ..., x, randomly from [1,2,...... ,10.2™.

2) Evaluate C(x, x5, X)) = .

3) It y = 0, then accept. Otherwise, reject.

Correctness Analysis: If C € ZEROP, then A accepts with probability

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Algorithm A for ZEROP tor a circuit C of size m that takes n inputs:
1) Choose xy, x,, ..., x, randomly from [1,2,...... ,10.2™.

2) Evaluate C(x, x5, X)) = .

3) It y = 0, then accept. Otherwise, reject.

Correctness Analysis: If C € ZEROP, then A accepts with probability

it C & ZEROP, then A rejects with probability

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Algorithm A for ZEROP tor a circuit C of size m that takes n inputs:
1) Choose xy, x,, ..., x, randomly from [1,2,...... ,10.2™.

2) Evaluate C(x, x5, X)) = .

3) It y = 0, then accept. Otherwise, reject.

Correctness Analysis: If C € ZEROP, then A accepts with probability 1.

it C & ZEROP, then A rejects with probability

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Algorithm A for ZEROP tor a circuit C of size m that takes n inputs:
1) Choose xy, x,, ..., x, randomly from [1,2,...... ,10.2™.

2) Evaluate C(x, x5, X)) = .

3) It y = 0, then accept. Otherwise, reject.

Correctness Analysis: If C € ZEROP, then A accepts with probability 1.

m

f C & ZEROP, then A rejects with probability > 1 0o

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Algorithm A for ZEROP tor a circuit C of size m that takes n inputs:
1) Choose xy, x,, ..., x, randomly from [1,2,...... ,10.2™.

2) Evaluate C(x, x5, X)) = .

3) It y = 0, then accept. Otherwise, reject.

Correctness Analysis: If C € ZEROP, then A accepts with probability 1.

m

it C € ZEROP, then A rejects with probability > 1 5 = 9/10

Polynomial Identity Testing

Schwartz-Zippel Lemma: Let p(x;, x,, ..., x,) be a non-zero polynomial with degree at most d.

Let S be a finite set of integers. Then, if a;,a,, ..., a, are randomly chosen from § with

replacement, then

Prip(a;,a,,...,a,) #0] > 1 — X

Algorithm A for ZEROP tor a circuit C of size m that takes n inputs:
1) Choose xy, x,, ..., x, randomly from [1,2,...... ,10.2.)

2) Evaluate C(xy, x5, ,X,) = . Flaw: y can be as large as (10.2)%"

3) It y = 0, then accept. Otherwise, reject.

Correctness Analysis: If C € ZEROP, then A accepts with probability 1.

m

it C € ZEROP, then A rejects with probability > 1 5 = 9/10

Polynomial Identity Testing

Polynomial Identity Testing

Lemma: Lety € [1,(10.27)]

Polynomial Identity Testing

Lemma: Let y € [1,(10.2)%"] and a k is a number chosen randomly from [1,2%M].

Polynomial Identity Testing

Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with

probability at least 6 = 4— k does not divide y.
m

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 0 = —, k does not divide y.

dm
Proof:

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 0 = —, k does not divide y.

4dm
Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 6 = 4— k does not divide y.

m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 6 = 4— k does not divide y.

m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

of prime numbers in [1,22m]

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 6 = 4— k does not divide y.

m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

2m

of prime numbers in [1,2%"] >

2m

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 6 = 4— k does not divide y.

m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

2m

of prime numbers in [1,2%"] >

2m
(from primee number theorem)

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 6 = 4— k does not divide y.

m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

2m

of prime numbers in [1,2%"] >

2m

(from primee number theorem)

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 6 = 4— k does not divide y.

m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

2m

of prime numbers in [1,2%"] >

N

2m

(from primee number theorem)

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 6 = 4— k does not divide y.

m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

2m

of prime numbers in [1,2%"] >

ST < 1o
o S| < logy

(from primee number theorem)

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 6 = 4— k does not divide y.

m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

2m

of prime numbers in [1,2%"] >

15| < logy < S5m2™
2m

(from primee number theorem)

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 6 = 4— k does not divide y.

m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

2m

of prime numbers in [1,2%"] >

15| < logy < S5m2™ <

2m 4dm

(from primee number theorem)

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with
probability at least 6 = 4— k does not divide y.

m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

2m

of prime numbers in [1,2%"] >

15| < logy < S5m2™ <

2m 4dm

(from primee number theorem)

of prime numbers in [1,2°""] that are not in S

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with

probability at least 6 = 4— k does not divide y.
m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

2m 22m

of prime numbers in [1,2%"] >

15| < logy < S5m2™ <

2m 4dm

(from primee number theorem)

22m

4dm

of prime numbers in [1,2°"] that are not in § >

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with

probability at least 6 = 4— k does not divide y.
m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

2m 22m

of prime numbers in [1,2%"] >

15| < logy < S5m2™ <

2m 4dm

(from primee number theorem)

22m

4dm

1 . 2°M [4m 1
Probability that k does not divide y > = —
22m 4m

of prime numbers in [1,2°"] that are not in § >

Polynomial Identity Testing
Lemma: Let y € [1,(10.27)?"] and a k is a number chosen randomly from [1,2°"]. Then, with

probability at least 6 = 4— k does not divide y.
m

Proof: Let S = {p,,p,. ..., p;} denote the set of all prime factors of y.

Sufficient to show that with probability > 0, k will be a prime number number not in §.

2m 22m

of prime numbers in [1,2%"] >

15| < logy < S5m2™ <

2m 4dm

(from primee number theorem)

22m

4dm

1 . 2°M [4m 1
Probability that k does not divide y > = —
22m 4m

of prime numbers in [1,2°"] that are not in § >

Polynomial Identity Testing

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:

1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:

1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.
2) Choose k randomly from [1,2%™].

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:

1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.
2) Choose k randomly from [1,2%™].
3) Evaluate C(x;, x,, ,X,) mod k = y.

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) If y = 0, then accept. Otherwise, reject.

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

it C € ZEROP, then A accepts with probability

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.
it C & ZEROP, then A rejects with probability

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.
it C & ZEROP, then A rejects with probability > (9/10)

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.
it C & ZEROP, then A rejects with probability > (9/10) . (1/4m)

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) If y = 0, then accept. Otherwise, reject.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.
it C & ZEROP, then A rejects with probability > (9/10) . (1/4m)

How can we improve the probability to a constant?

Polynomial Identity Testing

Algorithm B for ZEROP tor a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) It y = 0, then accept. Otherwise, reject.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.
it C & ZEROP, then A rejects with probability > (9/10) . (1/4m)

How can we improve the probability to a constant?

Repeat B O(m) times and accept iff y = 0 on all iterations.

Polynomial Identity Testing

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.
2) Choose k randomly from [1,2%™].

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:

1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.
2) Choose k randomly from [1,2%™].
3) Evaluate C(x;, x,, ,X,) mod k = y.

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) Repeat 2), 3) 40m/9 times.

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) Repeat 2), 3) 40m/9 times.

5) Accept iff y = 0 on all iterations.

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) Repeat 2), 3) 40m/9 times.

5) Accept iff y = 0 on all iterations.

Correctness Analysis:

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) Repeat 2), 3) 40m/9 times.

5) Accept iff y = 0 on all iterations.

Correctness Analysis:

it C € ZEROP, then A accepts with probability

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) Repeat 2), 3) 40m/9 times.

5) Accept iff y = 0 on all iterations.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) Repeat 2), 3) 40m/9 times.

5) Accept iff y = 0 on all iterations.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.

it C & ZEROP, then A accepts with probability

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) Repeat 2), 3) 40m/9 times.

5) Accept iff y = 0 on all iterations.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.

9
f C & ZEROP, then A accepts with probability < (1 - 40m>

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) Repeat 2), 3) 40m/9 times.

5) Accept iff y = 0 on all iterations.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.

40m/9
9
if C & ZEROP, then A accepts with probability < (1 - 40m>

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) Repeat 2), 3) 40m/9 times.

5) Accept iff y = 0 on all iterations.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.

40m/9
9
f C & ZEROP, then A accepts with probability < (1 — 40m> < l/e

Polynomial Identity Testing

Algorithm D for ZEROP for a circuit C of size m that takes n input:
1) Choose xi, x5, ..., x, randomly from [1,2,...... . 10.2™.

2) Choose k randomly from [1,2%™].

3) Evaluate C(x;, x,, ,X,) mod k = y.

4) Repeat 2), 3) 40m/9 times.

5) Accept iff y = 0 on all iterations.

Correctness Analysis:

it C € ZEROP, then A accepts with probability 1.

40m/9
9
f C & ZEROP, then A accepts with probability < (1 — 40m> < l/e

